A Decomposition Algorithm for Noncrossing Trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Decomposition Algorithm for Noncrossing Trees

Based on the classic bijective algorithm for trees due to Chen, we present a decomposition algorithm for noncrossing trees. This leads to a combinatorial interpretation of a formula on noncrossing trees of size n with k descents. We also derive the formula for noncrossing trees of size n with k descents and i leaves, which is a refinement of the formula given by Flajolet and Noy. As an applicat...

متن کامل

Noncrossing Trees and Noncrossing Graphs

Abstract. We give a parity reversing involution on noncrossing trees that leads to a combinatorial interpretation of a formula on noncrossing trees and symmetric ternary trees in answer to a problem proposed by Hough. We use the representation of Panholzer and Prodinger for noncrossing trees and find a correspondence between a class of noncrossing trees, called proper noncrossing trees, and the...

متن کامل

Locally Oriented Noncrossing Trees

We define an orientation on the edges of a noncrossing tree induced by the labels: for a noncrossing tree (i.e., the edges do not cross) with vertices 1, 2, . . . , n arranged on a circle in this order, all edges are oriented towards the vertex whose label is higher. The main purpose of this paper is to study the distribution of noncrossing trees with respect to the indegree and outdegree seque...

متن کامل

Descents in Noncrossing Trees

The generating function for descents in noncrossing trees is found. A bijection shows combinatorially why the descent generating function with descents set equal to 2 is the generating function for connected noncrossing graphs.

متن کامل

On Trees and Noncrossing Partitions

We give a simple and natural proof of (an extension of) the identity P (k, l, n) = P2(k − 1, l − 1, n − 1). The number P (k, l, n) counts noncrossing partitions of {1, 2, . . . , l} into n parts such that no part contains two numbers x and y, 0 < y − x < k. The lower index 2 indicates partitions with no part of size three or more. We use the identity to give quick proofs of the closed formulae ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2014

ISSN: 1077-8926

DOI: 10.37236/3353